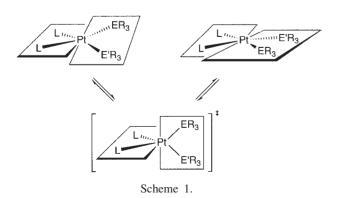
Headline Articles

Insertion of Phenylacetylene into [Pt(GeMe₃)(SnMe₃)(PMe₂Ph)₂]

Takashi Sagawa, 1 Rika Tanaka, 1 and Fumiyuki Ozawa*

International Research Center for Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011


¹Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558-8585

Received February 3, 2004; E-mail: ozawa@scl.kyoto-u.ac.jp

The reaction of $Me_3GeSnMe_3$ with a platinum(0) complex, in situ generated from $[Pt(cod)_2]$ (cod = 1,5-cyclooctadiene) and 2 molar quantity of PMe_2Ph in Et_2O , formed a cis-trans mixture of $[Pt(GeMe_3)(SnMe_3)(PMe_2Ph)_2]$ (1). Recrystallization of crude 1 from CH_2Cl_2 -pentane gave pure *cis-*1, while the isolated cis isomer was again converted to an equilibrium mixture (cis:trans = 8:2) in solution. The cis-trans mixture of 1 underwent competitive insertion of phenylacetylene into Pt-Sn and Pt-Ge bonds to give Cis- $[Pt(GeMe_3)(C(Ph)=CH(SnMe_3))(PMe_2Ph)_2]$ (2a) and Cis- $[Pt(C(Ph)=CH(GeMe_3))(SnMe_3)(PMe_2Ph)_2]$ (3a), respectively, in a ratio of 80:20, while 2a was thermodynamically less stable, and converted to 3a in solution. The insertion mechanism was examined by kinetic investigations.

Complexes bearing inter-element linkages between group 10 metals and heavy group 14 elements have attracted a great deal of interest. This is not only due to their key roles in the catalytic addition of element–element bonds to unsaturated hydrocarbons, but also due to their unique structures and chemical properties, significantly different from those of common organometallic complexes with metal–carbon and metal–hydrogen bonds. Properties, Erg. [M(ER3)(Erg.)(Erg.)) complexes (M = Pd, Pt; Erg., Erg. = silyl, germyl, stannyl; L = tertiary phosphine) have a twisted structure significantly distorted from a square planar geometry, which is rather unusual for complexes having a d8 metal center. So. Fard Furthermore, it has been documented that these complexes undergo rapid twist-rotation via a tetrahedral transition state in solution (Scheme 1).

We are currently interested in the reaction chemistry of such complexes, particularly in alkyne-insertion into metal-element bonds and reductive elimination giving carbon-element

bonds.^{7,8} Although these reactions have been assumed to be key elementary processes for catalytic reactions, their details, especially from mechanistic viewpoints, have remained nearly unexplored. In this paper, we describe the synthesis and alkyneinsertion reaction of [Pt(GeMe₃)(SnMe₃)(PMe₂Ph)₂] (1).¹⁰ This study is closely related to our previous report on cis- $[Pt(SiR_3)(SnMe_3)L_2]$ complexes (A) $(SiR_3 = SiMe_3, SiMe_2Ph,$ SiMePh₂, SiPh₃). 7b,c Thus, we performed kinetic investigations on the insertion of alkynes (ArC≡CH) into A in solution, and confirmed the following points: (i) A undergoes the competitive insertion of alkynes into Pt-Sn and Pt-Si bonds to give cis-[Pt(SiR₃){C(Ar)=CH(SnMe₃)}L₂] (**B**) and cis-[Pt{C(Ar)= $CH(SiR_3)$ { $(SnMe_3)L_2$ } (\mathbb{C}), respectively. (ii) Although \mathbb{B} is further isomerized to C in solution, this reaction is effectively suppressed by the addition of free L to the system. Accordingly, we could observe the ratio of competitive insertion into the Pt-Sn and Pt-Si bonds under a kinetic condition as well as the ratio of **B** to **C** under a thermodynamic condition by choosing the presence or absence of added L. (iii) The kinetic ratio of B to C in the competitive insertion markedly varies with silyl ligands [e.g., $\mathbf{B:C} = 0.100 \text{ (SiMe}_3), 30.70 \text{ (SiMe}_2\text{Ph)}, 59.41$ (SiMePh₂), 97:3 (SiPh₃), for PhC≡CH (alkyne) and PMe₂Ph (L)]. On the other hand, (iv) C is thermodynamically more stable than **B** irrespective of the silyl ligands.

As described below, germyl(stannyl) complex 1 behaves very similarly to silyl(stannyl) complexes A. Thus, 1 undergoes competitive insertion of phenylacetylene into Pt–Ge and Pt–Sn bonds under kinetic conditions, whereas under thermodynamic conditions, the complex derived from the insertion into Pt–Sn bond is exclusively converted to the other complex formed

by insertion into the Pt-Ge bond.

Results and Discussion

Synthesis of [Pt(GeMe₃)(SnMe₃)(PMe₂Ph)₂] (1). The treatment of [Pt(cod)₂] with PMe₂Ph (2 molar quantity) and Me₃GeSnMe₃ (1 molar quantity) in Et₂O at room temperature gave a yellow solution containing cis and trans isomers of [Pt(GeMe₃)(SnMe₃)(PMe₂Ph)₂] (1) in an 8:2 ratio, as confirmed by ³¹P{¹H} NMR spectroscopy (Scheme 2). Concentration of the solution by pumping, followed by washing the resulting precipitate with pentane, afforded a yellow solid of *cis*-1 in 73% yield, which was further purified by recrystallization from CH₂Cl₂/pentane to give single crystals of *cis*-1 (56%), suitable for X-ray diffraction analysis.

Figure 1 shows an ORTEP diagram of *cis-***1**, which adopts a twisted structure significantly distorted from the square planar geometry around platinum. The dihedral angle between the PtP(1)P(2) and PtGeSn planes is 31.3°, and the Pt–Ge and Pt–Sn bonds are tilted from the PtP₂ plane by 19.9 and 21.0°, respectively, toward opposite directions from each other.

The isolated *cis*-1 underwent cis–trans isomerization in CD_2Cl_2 at 20 °C to give an equilibrium mixture containing an 80:20 ratio of cis and trans isomers in 3 h. The isomerization

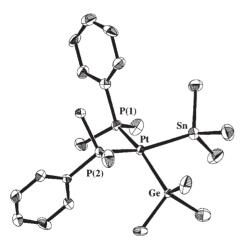


Fig. 1. X-ray structure of *cis*-1. The thermal ellipsoids are drawn at 50% probability levels. Hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Pt–Ge = 2.511(1), Pt–Sn = 2.580(1), Pt–P(1) = 2.310(3), Pt–P(2) = 2.315(3), Ge–Pt–Sn = 84.60(4), Ge–Pt–P(1) = 157.32(8), Ge–Pt–P(2) = 93.27(8), Sn–Pt–P(1) = 92.92(8), Sn–Pt–P(2) = 156.53(8), P(1)–Pt–P(2) = 97.6(1).

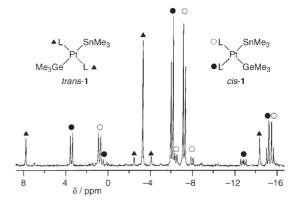


Fig. 2. $^{31}P\{^{1}H\}$ NMR spectrum of a mixture of *cis*- and *trans*-1 in CD₂Cl₂ at -50 °C (121.49 MHz), L = PMe₂Ph.

was markedly accelerated by the addition of free PMe_2Ph to the system. Thus, equilibrium was established within a few minutes in CD_2Cl_2 at 20 °C in the presence of a 0.1 molar quantity of PMe_2Ph . This observation is consistent with the Berry's pseudo-rotation process involving five-coordinate intermediates generated by the coordination of PMe_2Ph to 1. A similar isomerization process has been proposed for bis(germyl)platinum complexes.^{3,6}

The cis and trans geometries of 1 in solution were confirmed by ³¹P{¹H} NMR spectroscopy. Figure 2 shows the ³¹P{¹H} NMR spectrum of an equilibrium mixture of 1 in CD_2Cl_2 at -50 °C. The two sets of doublets at δ -5.9 and -7.1 are ascribed to *cis-*1, and the singlet at δ -3.2 to *trans*-1. The latter involves 195 Pt satellites with the $^{1}J_{\text{PtP}}$ coupling constant of 2691 Hz. This value is consistent with the trans arrangement of two phosphorus atoms around platinum. On the other hand, the doublet signals at δ –5.9 and –7.1 for *cis*-1 exhibit the ${}^{1}J_{PtP}$ values of 2309 and 1940 Hz, respectively; the values are consistent with the cis-PtP2 structure having stannyl and germyl ligands trans to the phosphine ligands, respectively. Since the doublet at δ -5.9 involves large couplings to Sn [1686 (119 Sn), 1612 (117 Sn)] whereas the doublet at δ –7.1 involves relatively small couplings [189 (119 Sn), 181 (117 Sn)], the former and latter signals are assignable to the phosphorus trans and cis to the SnMe₃ ligand, respectively.

The signal of *trans*-1 was temperature-independent. On the other hand, the two sets of doublets of *cis*-1 gradually broadened at elevated temperatures, and coalesced into a broad doublet at 37 °C. A similar behavior has been observed for related bis(silyl)-, 7d silyl(stannyl)-, 7b,c and bis(stannyl)platinum(II) 5 complexes, and attributed to the occurrence of a rapid twist-rotation via a tetrahedral transition state (Scheme 1). 5 In the present case, the rate of rotation was estimated to be $1.8(2)\times 10~{\rm s}^{-1}$ at 20 °C by applying the chemical shifts of the main peaks to the Gutowsky–Holm's equation. 11

Alkyne-Insertion. We have confirmed that germyl(stannyl) complex 1 undergoes two types of processes in solution: cistrans isomerization and twist-rotation. The latter is operative on an NMR time-scale. On the other hand, the former is a relatively slow process, but notably accelerated by added PMe₂Ph. Having these observations in hand, we next examined alkyne-insertion into 1.

Complex 1 (25 mM) was treated with phenylacetylene (0.25

M) in CD₂Cl₂ at 20 °C. As can be seen from the time-course given in Fig. 3a, the cis and trans isomers of **1** were simultaneously reduced to be replaced by *cis*-[Pt{C(Ph)=CH(GeMe₃)}-(SnMe₃)(PMe₂Ph)₂] (**3a**). Thus, the initial ratio of the two geometrical isomers of **1** (cis:trans = 81:19) was almost unchanged during the reaction. The formation of **3a** obeyed pseudo-first-order kinetics with respect to the total concentration of *cis*-and *trans*-**1** ($k_{\text{obsd}} = 1.55(2) \times 10^{-3} \text{ s}^{-1}$).

On the other hand, when the reaction was carried out in the presence of added PMe_2Ph (9 mM), cis- $[Pt(GeMe_3)\{C(Ph)=$

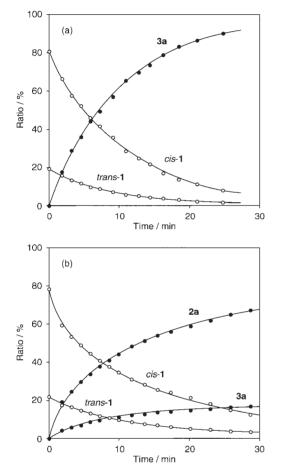


Fig. 3. Time-courses of the reaction of 1 with phenylacety-lene in CD_2Cl_2 in the absence (a) and presence (b) of added PMe_2Ph at 20 °C. Initial concentration: [1] = 25 mM, $[PhC\equiv CH] = 0.25$ M, $[PMe_2Ph] = 0$ (a) or 9 mM (b).

CH(SnMe₃)}(PMe₂Ph)₂] (**2a**) was observed in addition to **3a** (Fig. 3b). Similarly to the reaction without added PMe₂Ph, the initial isomer ratio of **1** (cis:trans = 78:22) remained almost constant throughout the reaction. Furthermore, the ratio of **2a** to **3a** (80:20) remained constant ($k_{\text{obsd}} = 0.92(2) \times 10^{-3} \text{ s}^{-1}$).

The site of phenylacetylene-insertion (i.e., Pt-Ge or Pt-Sn) was found to be altered by the absence or presence of added PMe₂Ph. As described in the introductory part, almost the same dependence of the insertion site on the amount of added phosphine was observed for cis-[Pt(SiR₃)(SnMe₃)L₂] complexes (A). 7b,c We may therefore consider very similar reaction processes for the present germyl(stannyl) complex 1 as well (Scheme 3). Thus, 1 undergoes competitive insertion of phenylacetylene into the Pt-Sn and Pt-Ge bonds to give the insertion complexes 2a and 3a, respectively. Since 2a is thermodynamically less stable than 3a, this complex may be successively converted to 3a. Accordingly, 3a was observed as the sole insertion product in the absence of added PMe₂Ph (Fig. 3a). However, since the isomerization is effectively retarded by free PMe₂Ph, the kinetic ratio of 2a to 3a (80:20) in the competitive insertion is preserved in the presence of added PMe₂Ph. Actually, a kinetic mixture of 2a and 3a, generated from 1 (25 mM) and phenylacetylene (0.25 M) in toluene- d_8 in the presence of added PMe₂Ph (5 mM) at 20 °C, was totally converted to 3a in 12 h upon heating (50 °C).

Figure 4 shows the $^{31}P\{^{1}H\}$ NMR spectra of **2a** (a) and **3a** (b). Two sets of doublets with Pt and Sn satellites can be observed for each complex. The signals of **3a** involve J_{SnP} couplings comparable to cis-**1** [1789 (^{119}Sn) and 1710 (^{117}Sn) Hz for δ –13.8; 168 (^{119}Sn) and 160 (^{117}Sn) Hz for δ –16.0]. This

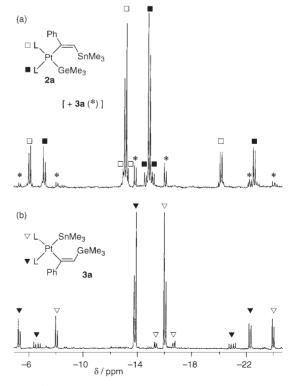


Fig. 4. $^{31}P\{^{1}H\}$ NMR spectra of **2a** (a) and **3a** (b) in CD₂Cl₂ at 20 °C (121.49 MHz). The sample of (a) contains a small amount to **3a**. L = PMe₂Ph.

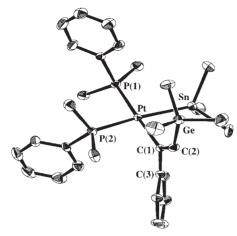
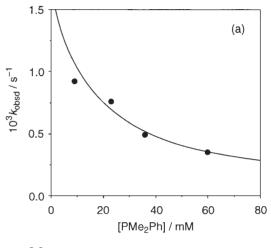


Fig. 5. X-ray structure of **3a**. The thermal ellipsoids are drawn at 30% probability levels. Hydrogen atoms are omitted for clarity. Selected bond distances (Å) and angles (deg): Pt–Sn = 2.6140(7), Pt–P(1) = 2.301(2), Pt–P(2) = 2.338(2), Pt–C(1) = 2.090(6), C(1)–C(2) = 1.325(7), C(1)–C(3) = 1.501(9), Ge–C(2) = 1.930(7), Sn–Pt–P(1) = 92.38(5), Sn–Pt–P(2) = 173.54(4), Sn–Pt–C(1) = 84.0(2), P(1)–Pt–P(2) = 94.07(6), P(1)–Pt–C(1) = 175.4(2), P(2)–Pt–C(1) = 89.6(2), Pt–C(1)–C(2) = 127.9(5), Pt–C(1)–C(3) = 114.8(3), C(2)–C(1)–C(3) = 117.3(5), Ge–C(2)–C(1) = 133.3(5).

fact is consistent with the presence of a Pt–Sn bond in **3a**. On the other hand, the J_{SnP} couplings observed for **2a** were small [29 Hz for δ –13.1; 68 Hz for δ –14.9].

The regiochemistry of phenylacetylene-insertion giving the structures "PtC(Ph)=CH(SnMe₃)" in **2a** and "PtC(Ph)=CH(GeMe₃)" in **3a** was determined by 13 C{ 1 H} NMR spectroscopy. Thus, the α -vinylic carbon bonded to platinum appeared as a doublet of doublets with 195 Pt satellites, respectively [**2a**: δ 179.4 (dd, $^2J_{PC}=103$ and 14 Hz, $^1J_{PtP}=749$ Hz); **3a**: δ 172.7 (dd, $^2J_{PC}=100$ and 13 Hz, $^1J_{PtC}=704$ Hz)]. Since these signals disappeared in the DEPT NMR spectra, they were assigned to the phenyl-substituted carbons.

The structure of **3a** was further confirmed by X-ray diffraction analysis. The ORTEP diagram given in Fig. 5 shows a square planar structure having SnMe₃ and C(Ph)=CH(GeMe₃) ligands in mutually cis positions. The GeMe₃ group is oriented cis and trans to the platinum and phenyl group, respectively, showing the occurrence of cis insertion of phenylacetylene into the Pt–Ge bond.


The insertion reactions were examined with other alkynes. The reaction of **1** (25 mM) with $p\text{-MeC}_6\text{H}_4\text{C}\equiv\text{CH}$ (0.25 M) in CD₂Cl₂ in the presence of added PMe₂Ph (9 mM) proceeded with a pseudo-first-order rate constant of $7.00(5) \times 10^{-4} \text{ s}^{-1}$ at 20 °C to give **2b** and **3b** in a 78:22 ratio (Scheme 3). On the other hand, **1** (25 mM) reacted with MeO₂CC \equiv CCO₂Me (25 mM) instantly at room temperature to afford cis-[Pt(GeMe₃)-{C(CO₂Me)=C(CO₂Me)(SnMe₃)}(PMe₂Ph)₂] (**2c**) as the insertion product into Pt–Sn bond, selectively.

Kinetic Study. The competitive insertion in the presence of added PMe₂Ph was examined by kinetic experiments. Table 1 lists the pseudo-first-order rate constants measured under various concentrations of PhC≡CH and PMe₂Ph. The product ratio

Table 1. Pseudo-First-Order Rate Constants for the Insertion of Phenylacetylene into 1^{a)}

Run	[PhC≡CH]/M	[PMe ₂ Ph]/mM	$10^3 k_{\rm obsd}/{\rm s}^{-1}$
1	0.25	9	0.92(2)
2	0.25	23	0.759(2)
3	0.25	36	0.49(1)
4	0.25	60	0.349(7)
5	0.16	23	0.45(1)
6	0.45	23	1.31(1)
7	0.64	23	1.87(4)

a) All runs were carried out in CD_2Cl_2 at 20 °C. Initial concentration: $[1]_0 = 25$ mM.

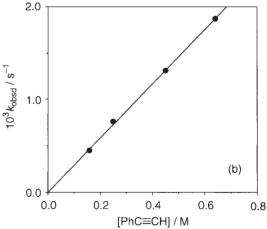


Fig. 6. (a) Plot of pseudo-first-order rate-constants against the concentration of added PMe₂Ph for the data of runs 1–4 in Table 1. The curve line is based on Eq. 8. (b) Plot of pseudo-first-order rate-constants against phenylacety-lene-concentration for the data of runs 2 and 5–7 in Table 1. The straight line is based on least-squares calculation.

of **2a** to **3a** was 80:20 for all runs. Furthermore, the equilibrium between *cis*- and *trans*-**1** was established through the reactions. The reaction progress was retarded by added PMe₂Ph (runs 1–4; Fig. 6a). On the other hand, the reaction rate increased linearly as the concentration of phenylacetylene increased (runs 2 and 5–7; Fig. 6b).

Scheme 4. $L = PMe_2Ph$.

These kinetic observations are in good accordance with those previously reported for *cis*-silyl(stannyl)platinum complexes (**A**). The Accordingly, we may assume a very similar insertion mechanism, as depicted in Scheme 4. The only difference is the occurrence of cis—trans isomerization of the starting **1**. Thus, unlike the silyl(stannyl) complexes, for which only cis isomers are present, we must consider which isomer of **1** is reactive toward the insertion. Although we could obtain no direct information concerning this point, a previous observation on a related insertion system may be taken as an indication that *cis*-**1** is the active species. Thus, it has been confirmed that only the cis isomer of [PtMe(SiPh₃)(PMe₂Ph)₂] undergoes the insertion of phenylacetylene, whereas the trans isomer is totally inactive toward insertion. Te,f

The next step is the coordination of phenylacetylene with *cis*-1. This step is considered to proceed via an associative displacement of one of the PMe₂Ph ligands (L) with phenylacetylene. The presence of partial dissociation of L, prior to rate-determining insertion, is in agreement with the fact that the insertion is retarded by the addition of L to the system (Fig. 6a). Complexes 4 and 5 thus formed are very probably interconverted with each other by twist-rotation, as observed for *cis*-1. These intermediates then undergo migratory insertion of the coordinated acetylene into the Pt–Sn or Pt–Ge bond. The resulting 6 and 7 are further converted to 2a and 3a, respectively, by trans to cis isomerization, followed by the coordination of L.

When the interconversion between 4 and 5 is rapid enough to keep the ratio of 4 to 5 constant, and the steady-state approximation can be applied to the total concentration of 4 and 5, the following relation holds:

$$(k_{1\text{Sn}} + k_{1\text{Ge}})[\text{PhC} \equiv \text{CH}][cis-1]$$

= $(k_{-1\text{Sn}}[\mathbf{4}] + k_{-1\text{Ge}}[\mathbf{5}])[L] + (k_{2\text{Sn}}[\mathbf{4}] + k_{2\text{Ge}}[\mathbf{5}]).$ (1)

Since $[5] = K_2[4]$,

$$(k_{1\text{Sn}} + k_{1\text{Ge}})[\text{PhC} \equiv \text{CH}][cis-1]$$

$$= \{(k_{-1\text{Sn}} + k_{-1\text{Ge}}K_2)[L] + (k_{2\text{Sn}} + k_{2\text{Ge}}K_2)\}[4].$$
 (2)

Accordingly,

$$[\mathbf{4}] = \frac{(k_{1\text{Sn}} + k_{1\text{Ge}})[\text{PhC} \equiv \text{CH}]}{(k_{-1\text{Sn}} + k_{-1\text{Ge}}K_2)[L] + (k_{2\text{Sn}} + k_{2\text{Ge}}K_2)} [cis-1]. \quad (3)$$

On the other hand, if the conversions of 6 to 2a and 7 to 3a are

sufficiently faster than the migratory insertion in 4 and 5, the sum of the formation rates of 2a and 3a can be expressed as follows:

$$\frac{d[2\mathbf{a}]}{dt} + \frac{d[3\mathbf{a}]}{dt} = k_{2\text{Sn}}[4] + k_{2\text{Ge}}[5] = (k_{2\text{Sn}} + k_{2\text{Ge}}K_2)[4].$$
(4)

Substitution of Eq. 3 into Eq. 4 yields the following rate expression:

$$\frac{d[2\mathbf{a}]}{dt} + \frac{d[3\mathbf{a}]}{dt}
= \frac{(k_{1\text{Sn}} + k_{1\text{Ge}})(k_{2\text{Sn}} + k_{2\text{Ge}}K_2)[\text{PhC} \equiv \text{CH}]}{(k_{-1\text{Sn}} + k_{-1\text{Ge}}K_2)[L] + (k_{2\text{Sn}} + k_{2\text{Ge}}K_2)} [cis-1]
= (k_{\text{obsd}}[1]).$$
(5)

Since [1] = [cis-1] + [trans-1] and $[cis-1]/[trans-1] = K_1$,

$$[cis-1] = \frac{K_1}{1+K_1}[1]. \tag{6}$$

Therefore, the rate expressions given below are obtained:

$$-\frac{d[1]}{dt} = k_{\text{obsd}}[1] = \frac{K_1}{(1+K_1)}$$

$$\times \frac{(k_{1\text{Sn}} + k_{1\text{Ge}})(k_{2\text{Sn}} + k_{2\text{Ge}}K_2)[\text{PhC} \equiv \text{CH}]}{(k_{-1\text{Sn}} + k_{-1\text{Ge}}K_2)[L] + (k_{2\text{Sn}} + k_{2\text{Ge}}K_2)}[1], \qquad (7)$$

$$\frac{K_1[\text{PhC} \equiv \text{CH}]}{(1+K_1)k_{\text{obsd}}} = \frac{(k_{-1\text{Sn}} + k_{-1\text{Ge}}K_2)[L]}{(k_{1\text{Sn}} + k_{1\text{Ge}})(k_{2\text{Sn}} + k_{2\text{Ge}}K_2)}$$

$$+ \frac{1}{(k_{1\text{Sn}} + k_{1\text{Ge}})}. \qquad (8)$$

Figure 7 shows a plot of the $K_1[PhC \equiv CH]_0/(1 + K_1)k_{obsd}$ values against the [PMe₂Ph] values for all runs listed in Table 1, giving a good linear correlation (r = 0.985), consistent with Eq. 8. Based on the intercept and slope, the ($k_{1Sn} + k_{1Ge}$) and ($k_{-1Sn} + k_{-1Ge}K_2$)/($k_{2Sn} + k_{2Ge}K_2$) values were estimated to be 0.86×10^{-2} s⁻¹ M⁻¹ and 65, respectively.

Finally, the conversion of **2a** to **3a** was confirmed to be operative by an intramolecular process. Thus, no incorporation of $p\text{-MeC}_6H_4C\equiv CH$ into **3** was observed, when a kinetic mixture of **2a** and **3a** in an 80:20 ratio was heated with 3 molar quantity of $p\text{-MeC}_6H_4C\equiv CH$ in toluene- d_8 at 50 °C (Scheme 5). Similarly, heating a mixture of **2b** and **3b** (78:22) with PhC $\equiv CH$ (3 molar quantity) in toluene- d_8 at 50 °C for 12 h led to the selective formation of **3b**.

Fig. 7. Plot of $K_1[PhC \equiv CH]/(1 + K_1)k_{obsd}$ values against the concentration of added PMe₂Ph for all data in Table 1. The straight line is based on least-squares calculation.

Scheme 5. $L = PMe_2Ph$.

Comparison of the Reactivities of Platinum-Element We have studied phenylacetylene-insertion into [Pt(GeMe₃)(SnMe₃)(PMe₂Ph)₂] (1). While 1 undergoes cistrans isomerization, the essential features of the insertion were very similar to those observed for cis-silyl(stannyl)platinum complexes (A). Therefore, we now have data to compare the relative reactivities of the platinum-group 14 element bonds toward phenylacetylene-insertion. Table 2 lists the site-selectivities observed for [Pt(EMe₃)(E'Me₃)(PMe₂Ph)₂] type complexes under kinetic and thermodynamic conditions. The siteselectivities measured under kinetic conditions suggest the following reactivity order: Pt-SiMe₃ > Pt-SnMe₃ > Pt-GeMe₃. This order seems to reflect a balance of the strength of Pt-element and C-element bonds, which are cleaved and formed upon insertion, respectively. Thus, the bond dissociation energies of the Pt-element bonds decrease in the order (in $kJ \text{ mol}^{-1}$): Pt-SiMe₃ (233) > Pt-GeMe₃ (182) > Pt-SnMe₃ (172), 12 whereas those of C-element bonds decrease in the order: Me–Si (317) > Me–Ge (265) > Me–Sn (226); Et–Si (287)

> Et–Ge (243) > Et–Sn (195); Ph–Si (358) > Ph-Ge (312) > Ph–Sn (261). 13 On the other hand, the insertion site under thermodynamic conditions seems to simply reflect the strength of the C–element bonds (i.e., Pt–SiMe $_3$ > Pt–SnMe $_3$ and Pt–GeMe $_3$ > Pt–SnMe $_3$), though direct information about the site-selectivity between Pt–Si and Pt–Ge bonds is presently unavailable. 14

Experimental

General Considerations. All manipulations were carried out under a nitrogen atmosphere using conventional Schlenk techniques. Nitrogen gas was dried by passing through P_2O_5 (Merck, SICAPENT). NMR spectra were recorded on a Varian Mercury 300 spectrometer. Chemical shifts are reported in δ (ppm), referenced to the 1H (of residual protons) and ^{13}C signals of the deuterated solvents, or to the ^{31}P signal of external 85% H_3PO_4 standard. Elemental analysis was performed on a Perkin-Elmer 2400II CHN Analyzer. Et_2O , pentane, and toluene- d_8 were dried over sodium diphenylketyl and distilled prior to use. CH_2Cl_2 was dried over CaH_2 and distilled prior to use. CD_2Cl_2 was dried over LiAlH4, vacuum transferred, and stored under a nitrogen atmosphere. $[Pt(cod)_2]$ was prepared according to literature. 15 All other chemicals were obtained from commercial suppliers and used without purification.

Preparation of *cis*-[Pt(GeMe₃)(SnMe₃)(PMe₂Ph)₂] (1). To a white suspension of [Pt(cod)₂] (207 mg, 0.50 mmol) in Et₂O (10 mL) were successively added PMe₂Ph (139 mg, 1.0 mmol) and Me₃GeSnMe₃ (142 mg, 0.50 mmol) at room temperature. The mixture was stirred for 10 min to give a yellow homogeneous solution. 31 P{ 1 H} NMR analysis of the solution revealed the formation of *cis*- and *trans*-1 in an 8:2 ratio. The solvent was removed by pumping, and the resulting oily material was cooled to -78 °C and dissolved in Et₂O (1 mL). The slow addition of pentane (3 mL) with vigorous stirring led to the precipitation of a pale yellow solid of 1, which was collected by filtration, washed with pentane (2 mL × 2), and dried under vacuum (275 mg, 73%). Recrystallization of the crude product from CH₂Cl₂/pentane gave analytically pure *cis*-1 as yellow crystals (211 mg, 56%).

cis-1. ¹H NMR (CD₂Cl₂, -50 °C) δ -0.02 (s, ${}^3J_{\text{PtH}} = 9.0$ Hz, ${}^2J_{\text{SnH}} = 36.6$ Hz, 9H, SnMe), 0.24 (d, ${}^4J_{\text{PH}} = 2.1$ Hz, ${}^3J_{\text{PtH}} = 15.6$ Hz, 9H, GeMe), 1.56 (d, ${}^2J_{\text{PH}} = 8.1$ Hz, ${}^3J_{\text{PtH}} = 25.8$ Hz, 6H, PMe), 1.57 (d, ${}^2J_{\text{PH}} = 7.8$ Hz, ${}^3J_{\text{PtH}} = 24.0$ Hz, 6H, PMe), 7.2–7.8 (m, 10H, Ph). ${}^{13}\text{C}\{{}^1\text{H}\}$ NMR (CD₂Cl₂, -50 °C) δ -2.4 (dd, ${}^3J_{\text{PC}} = 11$ and 4 Hz, ${}^2J_{\text{PtC}} = 70$ Hz, ${}^1J_{\text{SnC}} = 187$ Hz, SnMe), 8.1 (dd, ${}^3J_{\text{PC}} = 10$ and 6 Hz, ${}^2J_{\text{PtC}} = 37$ Hz, PMe), 18.9 (dd, ${}^1J_{\text{PC}} = 28$ Hz, ${}^3J_{\text{PC}} = 5$ Hz, ${}^2J_{\text{PtC}} = 37$ Hz, PMe), 127.9 (d, ${}^3J_{\text{PC}} = 1$ Hz, PPh), 128.0 (s, PPh), 129.6 (s, PPh), 129.7 (s, PPh), 131.2 (d, ${}^2J_{\text{PC}} = 12$ Hz, ${}^3J_{\text{PtC}} = 16$ Hz, PPh), 131.3 (d, ${}^2J_{\text{PC}} = 9$ Hz, ${}^3J_{\text{PtC}} = 18$ Hz, PPh), 138.4 (dd, ${}^1J_{\text{PC}} = 39$ Hz, ${}^3J_{\text{PC}} = 5$ Hz, PPh), 138.7 (dd, ${}^1J_{\text{PC}} = 38$ Hz, ${}^3J_{\text{PC}} = 3$ Hz, PPh). ${}^{31}\text{P}\{{}^1\text{H}\}$ NMR (CD₂Cl₂, -50 °C) δ -5.9 (d, ${}^2J_{\text{PP}} = 25$ Hz, ${}^1J_{\text{PtP}} = 2309$ Hz, ${}^2J_{\text{119}}$ _{SnP} = 1686 Hz, ${}^2J_{\text{117}}$ _{SnP} = 1612 Hz), -7.1 (d, ${}^2J_{\text{PP}} = 25$ Hz, ${}^1J_{\text{PtP}} = 218$ Hz). Anal. Calcd for

Table 2. Site-Selectivities for the Insertion of Phenylacetylene into Platinum-Element Bonds

Complex	Site-selectivity		
	Kinetic condition	Thermodynamic condition	
cis-[Pt(SiMe ₃)(SnMe ₃)(PMe ₂ Ph) ₂]	Pt-Si:Pt-Sn = 100:0	Pt-Si:Pt-Sn = 100:0	
$\textit{cis-}[Pt(GeMe_3)(SnMe_3)(PMe_2Ph)_2]$	Pt-Ge:Pt-Sn = 20:80	Pt-Ge:Pt-Sn = 100:0	

C₂₂H₄₀GeP₂PtSn: C, 35.10; H, 5.36%. Found: C, 35.20; H, 5.09%. *trans*-1. 1 H NMR (CD₂Cl₂, -50 °C) δ –0.37 (s, $^{3}J_{PtH} = 3.9$ Hz, $^{2}J_{SnH} = 31.5$ Hz, 9H, SnMe), -0.10 (s, $^{3}J_{PtH} = 11.4$ Hz, 9H, GeMe), 1.95 (virtual triplet, $J_{app} = 3.0$ Hz, $^{3}J_{PtH} = 34.2$ Hz, 12H, PMe), 7.2–7.8 (m, 10H, Ph). 31 P{ 1 H} NMR (CD₂Cl₂, -50 °C) δ –3.2 (s, $^{1}J_{PtP} = 2691$ Hz, $^{2}J_{^{119}SnP} = 180$ Hz, $^{2}J_{^{117}SnP} = 171$ Hz).

Identification of *cis*-[Pt(GeMe₃){C(Ph)=CH(SnMe₃)}-(PMe₂Ph)₂] (2a). Since 2a is readily converted to 3a in solution, its formation was confirmed by NMR spectroscopy without isolation. The sample solution was prepared by the treatment of 1 (48 mg, 64 μmol) with phenylacetylene (7.0 mg, 69 μmol) in CD₂Cl₂ (0.6 mL) in the presence of PMe₂Ph (1.0 mg, 7.2 μmol) at room temperature. Complex 1 disappeared within 3 h, as confirmed by 31 P{ 1 H} NMR spectroscopy, and the insertion complexes 2a and 3a were observed in an 80:20 ratio. Complex 2b was similarly generated from *p*-MeC₆H₄C≡CH instead of PhC≡CH and identified.

2a. 1 H NMR (CD₂Cl₂, 20 $^{\circ}$ C) δ 0.09 (d, $^{4}J_{PH} = 1.7$ Hz, $^{3}J_{PtH} =$ 16.1 Hz, 9H, GeMe), 0.31 (s, ${}^2J_{^{119}\text{SnH}} = 52.6$ Hz, ${}^2J_{^{117}\text{SnH}} = 50.2$ Hz, 9H, SnMe), 1.12 (d, ${}^{2}J_{PH} = 8.2$ Hz, ${}^{3}J_{PtH} = 21.2$ Hz, 3H, PMe), 1.32 (d, ${}^{2}J_{PH} = 8.1$ Hz, ${}^{3}J_{PtH} = 19.8$ Hz, 3H, PMe), 1.38 (d, ${}^{2}J_{PH} = 7.9 \text{ Hz}$, ${}^{3}J_{PtH} = 19.8 \text{ Hz}$, 3H, PMe), 1.62 (d, ${}^{2}J_{PH} =$ 11.7 Hz, ${}^{3}J_{\text{PtH}} = 23.4$ Hz, 3H, PMe), 7.0–7.8 (m, 15H, Ph), 7.97 (dd, ${}^{4}J_{PH} = 19.6$ and 4.0 Hz, ${}^{3}J_{PtH} = 106.6$ Hz, 1H, PtC=CH). ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ -7.0 (s, ¹ J_{119} _{SpC} = 327 Hz, $^{1}J_{117}_{SnC} = 312 \text{ Hz}$, SnMe), 6.0 (dd, $^{3}J_{PC} = 10$ and 3 Hz, $^{2}J_{PtC} =$ 84 Hz, GeMe), 13.9 (dd, ${}^{1}J_{PC} = 24$ Hz, ${}^{3}J_{PC} = 2$ Hz, ${}^{2}J_{PtC} = 25$ Hz, PMe), 14.8 (dd, ${}^{1}J_{PC} = 28$ Hz, ${}^{3}J_{PC} = 2$ Hz, ${}^{2}J_{PtC} = 33$ Hz, PMe), 17.9 (dd, ${}^{1}J_{PC} = 29$ Hz, ${}^{3}J_{PC} = 5$ Hz, ${}^{2}J_{PtC} = 22$ Hz, PMe), 18.4 (dd, ${}^{1}J_{PC} = 30$ Hz, ${}^{3}J_{PC} = 5$ Hz, ${}^{2}J_{PtC} = 38$ Hz, PMe), 125.6 (s, ${}^{5}J_{PtC} = 6$ Hz, Ph), 127.7 (s, Ph), 128.5 (s, PPh), 128.6 (s, PPh), 129.2 (d, ${}^{4}J_{PC} = 2$ Hz, ${}^{3}J_{PtC} = 43$ Hz, Ph), 129.8 (br(s), PPh), 130.8 (d, ${}^{2}J_{PC} = 12$ Hz, ${}^{3}J_{PtC} = 12$ Hz, PPh), 131.2 (d, ${}^{2}J_{PC} = 11 \text{ Hz}$, ${}^{3}J_{PtC} = 16 \text{ Hz}$, PPh), 138.3 (dd, ${}^{1}J_{PC} = 35 \text{ Hz}$, $^{3}J_{PC} = 2$ Hz, PPh), 138.9 (dd, $^{1}J_{PC} = 39$ Hz, $^{3}J_{PC} = 3$ Hz, PPh), 152.6 (dd, ${}^{3}J_{PC} = 7$ and 2 Hz, PtC(Ph)=CH), 179.4 (dd, ${}^{2}J_{PC} =$ 103 and 14 Hz, ${}^{1}J_{PtC} = 749$ Hz, PtC = CH). ${}^{31}P\{{}^{1}H\}$ NMR (CD₂Cl₂, 20 °C) δ -13.1 (d, ${}^{2}J_{PP} = 17$ Hz, ${}^{1}J_{PtP} = 1729$ Hz, $^{4}J_{\text{SnP}} = 29 \text{ Hz}$, $-14.9 \text{ (d, }^{2}J_{\text{PP}} = 17 \text{ Hz, }^{1}J_{\text{PtP}} = 1842 \text{ Hz, }^{4}J_{\text{SnP}} =$ 68 Hz).

2b. 1 H NMR (CD₂Cl₂, 20 $^{\circ}$ C) δ 0.07 (d, $^{4}J_{PH} = 1.7$ Hz, $^{3}J_{PtH} =$ 16.1 Hz, 9H, GeMe), 0.29 (s, ${}^2J_{{}^{119}{\rm SnH}}=52.6$ Hz, ${}^2J_{{}^{117}{\rm SnH}}=50.2$ Hz, 9H, SnMe), 1.12 (d, ${}^{2}J_{PH} = 8.2$ Hz, ${}^{3}J_{PtH} = 21.4$ Hz, 3H, PMe), 1.31 (d, ${}^{2}J_{PH} = 7.9$ Hz, ${}^{3}J_{PtH} = 19.8$ Hz, 3H, PMe), 1.38 (d, ${}^{2}J_{PH} = 7.9 \text{ Hz}$, ${}^{3}J_{PtH} = 19.8 \text{ Hz}$, 3H, PMe), 1.61 (d, ${}^{2}J_{PH} =$ 7.9 Hz, ${}^{3}J_{PtH} = 23.4$ Hz, 3H, PMe), 2.36 (s, 3H, p-Me), 7.0–7.8 (m, 15H, Ph), 7.73 (dd, ${}^{4}J_{PH} = 19.8$ and 3.8 Hz, ${}^{3}J_{PtH} = 128.2$ Hz, 1H, PtC=CH). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, 20 °C) δ -7.0 (s, $^{1}J_{SnC} = 326$ Hz, SnMe), 6.0 (dd, $^{3}J_{PC} = 9$ and 3 Hz, $^{2}J_{PtC} = 76$ Hz, GeMe), 13.8 (dd, ${}^{1}J_{PC} = 25$ Hz, ${}^{3}J_{PC} = 2$ Hz, ${}^{2}J_{PtC} = 25$ Hz, PMe), 14.8 (dd, ${}^{1}J_{PC} = 29$ Hz, ${}^{3}J_{PC} = 3$ Hz, ${}^{2}J_{PtC} = 29$ Hz, PMe), 17.9 (dd, ${}^{1}J_{PC} = 28$ Hz, ${}^{3}J_{PC} = 5$ Hz, ${}^{2}J_{PtC} = 22$ Hz, PMe), 18.4 (dd, ${}^{1}J_{PC} = 30$ Hz, ${}^{3}J_{PC} = 5$ Hz, ${}^{2}J_{PtC} = 38$ Hz, PMe), 21.9 (s, p-Me), 128.2 (s, Ph), 128.4 (s, PPh), 128.5 (s, PPh), 128.8 (d, ${}^{4}J_{PC} = 2$ Hz, ${}^{3}J_{PtC} = 44$ Hz, Ph), 129.7 (br(s), PPh), 130.8 (d, ${}^{2}J_{PC} = 12$ Hz, ${}^{3}J_{PtC} = 12$ Hz, PPh), 131.3 (d, $^{2}J_{PC} = 12 \text{ Hz}, \, ^{3}J_{PtC} = 17 \text{ Hz}, \, PPh), \, 135.2 \, (s, \, ^{5}J_{PtC} = 7 \text{ Hz}, \, Ph),$ 138.4 (dd, ${}^{1}J_{PC} = 35 \text{ Hz}$, ${}^{3}J_{PC} = 1 \text{ Hz}$, PPh), 138.9 (dd, ${}^{1}J_{PC} =$ 39 Hz, ${}^{3}J_{PC} = 3$ Hz, PPh), 149.8 (dd, ${}^{3}J_{PC} = 7$ and 2 Hz, PtC(Ph)=CH), 178.9 (dd, ${}^{2}J_{PC}=103$ and 14 Hz, PtC=CH). $^{31}P\{^{1}H\}$ NMR (CD₂Cl₂, 20 °C) δ –13.0 (d, $^{2}J_{PP}$ = 16 Hz, $^{1}J_{PtP}$ = 1717 Hz, ${}^{4}J_{SnP} = 22$ Hz), -14.9 (d, ${}^{2}J_{PP} = 18$ Hz, ${}^{1}J_{PtP} = 1868$ Hz, ${}^{4}J_{SnP} = 64 Hz$).

Preparation of cis-[Pt{C(Ph)=CH(GeMe₃)}(SnMe₃)- $(PMe_2Ph)_2$ (3a). To a solution of cis-1 (162 mg, 0.22 mmol) in CH₂Cl₂ (5 mL) was added phenylacetylene (43 mg, 0.42 mmol) at room temperature. The starting 1 disappeared in 2 h, and selective formation of **3a** was observed by ³¹P{¹H} NMR spectroscopy. Solvent was removed by pumping, and the resulting pale yellow residue was dried under vacuum. This product was dissolved in Et₂O (ca. 0.5 mL) at -78 °C. Pentane (1 mL) was added, and the mixture was vigorously stirred at the same temperature to give white precipitation of **3a**, which was collected by filtration, washed with pentane (1 mL \times 2), and dried under vacuum (132 mg, 70%). Recrystallization of this crude product from Et₂O/pentane gave colorless crystals of **3a** (106 mg, 56%). Complex **3b** was similarly prepared in 67% yield.

3a. ¹H NMR (CD₂Cl₂, 20 °C) δ -0.15 (d, ⁴ $J_{PH} = 0.7$ Hz, $^{3}J_{\text{PtH}} = 7.8 \text{ Hz}, ^{2}J_{\text{SnH}} = 37.5 \text{ Hz}, 9\text{H}, \text{SnMe}), 0.38 \text{ (s, 9H, GeMe)},$ 1.14 (d, ${}^{2}J_{PH} = 8.4$ Hz, ${}^{3}J_{PtH} = 24.9$ Hz, 3H, PMe), 1.35 (d, $^{2}J_{PH} = 8.1$ Hz, $^{3}J_{PtH} = 23.4$ Hz, 3H, PMe), 1.43 (d, $^{2}J_{PH} = 7.8$ Hz, ${}^{3}J_{PtH} = 22.2$ Hz, 3H, PMe), 1.61 (d, ${}^{2}J_{PH} = 8.1$ Hz, ${}^{3}J_{PtH} =$ 26.1 Hz, 3H, PMe), 7.0–7.8 (m, 15H, Ph), 7.60 (dd, ${}^{4}J_{PH} = 19.5$ and 4.5 Hz, ${}^{3}J_{PtH} = 112.2$ Hz, 1H, PtC=CH). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, 20 °C) δ -4.3 (dd, ${}^{3}J_{PC} = 10$ and 2 Hz, ${}^{2}J_{PtC} = 78$ Hz, ${}^{1}J_{119}_{SnC} = 193$ Hz, ${}^{1}J_{117}_{SnC} = 182$ Hz, SnMe), 0.47 (s, GeMe), 13.7 (dd, ${}^{1}J_{PC} = 27 \text{ Hz}$, ${}^{3}J_{PC} = 2 \text{ Hz}$, ${}^{2}J_{PtC} = 29 \text{ Hz}$, PMe), 14.5 (dd, ${}^{1}J_{PC} = 29 \text{ Hz}$, ${}^{3}J_{PC} = 3 \text{ Hz}$, ${}^{2}J_{PtC} = 39 \text{ Hz}$, PMe), 18.8 (dd, $^{1}J_{PC} = 30 \text{ Hz}, ^{3}J_{PC} = 5 \text{ Hz}, ^{2}J_{PtC} = 29 \text{ Hz}, PMe), 19.5 (dd, ^{1}J_{PC} =$ 32 Hz, ${}^{3}J_{PC} = 5$ Hz, ${}^{2}J_{PtC} = 41$ Hz, PMe), 125.7 (s, ${}^{5}J_{PtC} = 6$ Hz, Ph), 127.6 (s, Ph), 128.4 (s, PPh), 128.5 (s, PPh), 129.0 (d, ${}^{4}J_{PC} = 2$ Hz, ${}^{3}J_{PtC} = 45$ Hz, Ph), 129.7 (br(s), PPh), 130.9 (d, ${}^{2}J_{PC} = 12$ Hz, ${}^{3}J_{PtC} = 17 \text{ Hz}, PPh), 131.0 (d, {}^{2}J_{PC} = 12 \text{ Hz}, {}^{3}J_{PtC} = 17 \text{ Hz}, PPh),$ 132.8 (dd, ${}^{3}J_{PC} = 8$ and 5 Hz, ${}^{2}J_{PtC} = 47$ Hz, PtC=CH), 138.1 (dd, $^{1}J_{PC} = 36$ Hz, $^{3}J_{PC} = 2$ Hz, $^{2}J_{PtC} = 17$ Hz, PPh), 139.0 (dd, $^{1}J_{PC} = 43$ Hz, $^{3}J_{PC} = 3$ Hz, $^{2}J_{PtC} = 17$ Hz, PPh), 153.2 (dd, $^{3}J_{PC} = 6$ and 2 Hz, PtC(Ph)=CH), 172.7 (dd, $^{2}J_{PC} = 100$ and 13 Hz, ${}^{1}J_{PtC} = 704$ Hz, PtC = CH). ${}^{31}P\{{}^{1}H\}$ NMR ($CD_{2}Cl_{2}$, 20 ${}^{\circ}C$) δ -13.8 (d, ${}^2J_{PP} = 16$ Hz, ${}^1J_{PtP} = 2067$ Hz, ${}^2J_{^{119}SnP} = 1789$ Hz, $^{2}J_{^{117}SnP} = 1710 \text{ Hz}$), $-16.0 \text{ (d, } ^{2}J_{PP} = 16 \text{ Hz, } ^{1}J_{PtP} = 1938 \text{ Hz,}$ $^{2}J_{\text{H9}_{\text{SnP}}} = 168 \text{ Hz}, ^{2}J_{\text{H7}_{\text{SnP}}} = 160 \text{ Hz}$). Anal. for $C_{30}H_{46}GeP_{2}PtSn$: C, 42.14; H, 5.42%. Found: C, 42.53; H 5.27%.

3b. 1 H NMR (CD₂Cl₂, 20 $^{\circ}$ C) δ -0.14 (d, $^{4}J_{PH} = 0.7$ Hz, $^{3}J_{\text{PtH}} = 7.7 \text{ Hz}, ^{2}J_{\text{SnH}} = 37.5 \text{ Hz}, 9\text{H}, \text{SnMe}), 0.39 \text{ (s, 9H, GeMe)},$ 1.15 (d, ${}^{2}J_{PH} = 8.8$ Hz, ${}^{3}J_{PtH} = 25.1$ Hz, 3H, PMe), 1.35 (d, $^{2}J_{PH} = 8.3 \text{ Hz}, \, ^{3}J_{PtH} = 23.4 \text{ Hz}, \, 3H, \, PMe), \, 1.44 \, (d, \, ^{2}J_{PH} = 7.9 \, d)$ Hz, ${}^{3}J_{PtH} = 22.3$ Hz, 3H, PMe), 1.62 (d, ${}^{2}J_{PH} = 7.9$ Hz, ${}^{3}J_{PtH} =$ 21.2 Hz, 3H, PMe), 2.32 (s, 3H, p-Me), 7.0-7.7 (m, 15H, Ph and PtC=CH). ${}^{13}C\{{}^{1}H\}$ NMR (CD₂Cl₂, 20 °C) δ -4.3 (dd, ${}^{3}J_{PC} = 9$ and 2 Hz, ${}^{2}J_{PtC} = 78$ Hz, ${}^{1}J_{SnC} = 189$ Hz, SnMe), 0.48 (s, GeMe), 13.6 (dd, ${}^{1}J_{PC} = 27 \text{ Hz}$, ${}^{3}J_{PC} = 2 \text{ Hz}$, ${}^{2}J_{PtC} = 29 \text{ Hz}$, PMe), 14.5 (dd, ${}^{1}J_{PC} = 29 \text{ Hz}$, ${}^{3}J_{PC} = 3 \text{ Hz}$, ${}^{2}J_{PtC} = 39 \text{ Hz}$, PMe), 18.7 (dd, $^{1}J_{PC} = 30 \text{ Hz}, ^{3}J_{PC} = 5 \text{ Hz}, ^{2}J_{PtC} = 28 \text{ Hz}, \text{PMe}), 19.4 (dd, ^{1}J_{PC} = 28 \text{ Hz})$ 31 Hz, ${}^{3}J_{PC} = 5$ Hz, ${}^{2}J_{PtC} = 43$ Hz, PMe), 21.1 (s, p-Me), 128.3 (s, PPh), 128.4 (s, PPh), 128.5 (s, Ph), 129.0 (d, ${}^{4}J_{PC} = 2 \text{ Hz}$, ${}^{3}J_{PtC} =$ 45 Hz, Ph), 129.6 (br(s), PPh), 130.8 (d, ${}^{2}J_{PC} = 12$ Hz, ${}^{3}J_{PtC} = 14$ Hz, PPh), 131.0 (d, ${}^{2}J_{PC} = 11$ Hz, ${}^{3}J_{PtC} = 17$ Hz, PPh), 131.5 (t, ${}^{3}J_{PC} = 6 \text{ Hz}, {}^{2}J_{PtC} = 47 \text{ Hz}, \text{ PtC} = \text{CH}), 135.2 \text{ (s, Ph)}, 138.2 \text{ (dd,}$ ${}^{1}J_{PC} = 36 \text{ Hz}, {}^{3}J_{PC} = 3 \text{ Hz}, 139.1 \text{ (dd, } {}^{1}J_{PC} = 42 \text{ Hz}, {}^{3}J_{PC} = 3$ Hz, ${}^{2}J_{PtC} = 16$ Hz, PPh), 153.2 (dd, ${}^{3}J_{PC} = 5$ and 2 Hz, ${}^{2}J_{PtC} =$ 16 Hz, PtC(Ph)=CH), 172.3 (dd, ${}^{2}J_{PC} = 100$ and 13 Hz, ${}^{1}J_{PtC} =$ 698 Hz, PtC=CH). ³¹P{¹H} NMR (CD₂Cl₂, 20 °C) δ -13.7 (d, $^{2}J_{PP} = 18$ Hz, $^{1}J_{PtP} = 2076$ Hz, $^{2}J_{^{119}SnP} = 1795$ Hz, $^{2}J_{^{117}SnP} =$ 1713 Hz), -16.2 (d, ${}^{2}J_{PP} = 16$ Hz, ${}^{1}J_{PtP} = 1930$ Hz, ${}^{2}J_{119}{}_{SnP} =$

Table 3. Crystallographic Data and Details of Structure Determination for cis-1 and 3a

	cis-1	3a
Formula	C ₂₂ H ₄₀ GeP ₂ PtSn	C ₃₀ H ₄₆ GeP ₂ PtSn
Formula weight	752.88	855.01
Crystal appearance	Yellow plate	Colorless block
Crystal size/mm	$0.38 \times 0.25 \times 0.06$	$0.35 \times 0.15 \times 0.04$
Crystal system	orthorhombic	triclinic
Space group	Pbca (#61)	P1 (#2)
$a/ ext{Å}$	15.306(2)	10.544(1)
$b/ m \AA$	17.511(2)	11.196(1)
c/Å	19.724(3)	15.506(2)
$\alpha/{ m deg}$		88.191(9)
$eta/{ m deg}$		80.600(8)
γ/deg		66.451(7)
$V/\text{Å}^3$	5286(1)	1654.3(4)
Z	8	2
$d_{\rm calcd}/{\rm gcm^{-3}}$	1.892	1.716
$\mu(\text{Mo K}\alpha)/\text{cm}^{-1}$	74.52	59.65
Temp/°C	-70	-50
$2\theta_{\rm max}/{\rm deg}$	55.0	55.0
No. of reflections collected	52199	16291
No. of unique reflections	$6054 (R_{\text{int}} = 0.123)$	7431 ($R_{\rm int} = 0.030$)
Absorption correction	Numerical	Empirical
Transmission factors	0.2137-0.7532	0.5639-0.7877
No. of observed reflections	$5685 \ (I \ge 2.0\sigma(I))$	6839 $(I \ge 2.0\sigma(I))$
No. of variables	244	316
$R^{\mathrm{a})} \ (I \ge 2\sigma(I))$	0.082	0.044
$R_{\rm w}^{\rm b)}$ (all data)	0.213	0.107
GOF	1.16	1.07
Max and min peak/e Å ⁻³	4.69, -2.94 (near Pt)	1.75, -2.29 (near Pt)

a) $R = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$. b) $R_w = [\Sigma w(F_0^2 - F_c^2)^2/\Sigma w(F_0^2)^2]^{1/2}$.

168 Hz, ${}^{2}J_{^{117}SnP} = 160$ Hz). Anal. for $C_{31}H_{48}GeP_{2}PtSn$: C, 42.85; H, 5.57%. Found: C, 42.83; H, 5.37%.

Preparation of cis-[Pt(GeMe₃){C(CO₂Me)=C(CO₂Me)- $(SnMe_3)$ { $(PMe_2Ph)_2$] (2c). To a solution of 1 (182 mg, 0.24) mmol) in CH₂Cl₂ (5 mL) was added dimethyl acetylenedicarboxvlate (42 mg, 0.30 mmol) at -50 °C. The color of the solution changed instantly from yellow to red. The solvent was removed by pumping at room temperature, and the resulting red oily material was dissolved in Et₂O (0.5 mL) at −78 °C. The addition of pentane (1 mL) with stirring led to the precipitation of a reddish orange solid, which was collected by filtration, washed with pentane (1 mL \times 2) at -78 °C, and dried under vacuum (175 mg, 81% yield).

2c. ${}^{1}\text{H NMR (CD}_{2}\text{Cl}_{2}, 20 \, {}^{\circ}\text{C}) \, \delta \, 0.13 \, (d, {}^{4}J_{\text{PH}} = 1.8 \, \text{Hz}, {}^{3}J_{\text{PtH}} =$ 14.7 Hz, 9H, GeMe), 0.34 (s, ${}^{2}J_{119}_{SnH} = 53.7$ Hz, ${}^{2}J_{117}_{SnH} = 51.6$ Hz, 9H, SnMe), 1.25 (d, ${}^{2}J_{PH} = 8.3$ Hz, ${}^{3}J_{PtH} = 23.1$ Hz, 3H, PMe), 1.48 (d, ${}^2J_{PH} = 9.8$ Hz, ${}^3J_{PtH} = 19.8$ Hz, 3H, PMe), 1.51 (d, ${}^{2}J_{PH} = 9.4 \text{ Hz}$, ${}^{3}J_{PtH} = 15.6 \text{ Hz}$, 3H, PMe), 1.57 (d, ${}^{2}J_{PH} =$ 9.4 Hz, ${}^{3}J_{\text{PtH}} = 26.0$ Hz, 3H, PMe), 3.59 (s, 3H, CO₂Me), 3.66 (s, 3H, CO_2Me), 7.2–7.8 (m, 10H, Ph). $^{13}C\{^1H\}$ NMR (CD_2Cl_2 , 20 °C) δ -6.4 (s, ${}^{1}J_{119}{}_{SnC}$ = 352 Hz, ${}^{1}J_{117}{}_{SnC}$ = 336 Hz, SnMe), 5.4 (dd, ${}^{3}J_{PC} = 8$ and 3 Hz, ${}^{2}J_{PtC} = 64$ Hz, GeMe), 13.4 (d, ${}^{1}J_{PC} =$ 28 Hz, ${}^{2}J_{PtC}$ = 26 Hz, PMe), 16.2 (dd, ${}^{1}J_{PC}$ = 29 Hz, ${}^{3}J_{PC}$ = 3 Hz, $^2J_{\text{PtC}} = 30$ Hz, PMe), 16.8 (dd, $^1J_{\text{PC}} = 31$ Hz, $^3J_{\text{PC}} = 4$ Hz, $^2J_{\text{PtC}} = 32$ Hz, PMe), 18.2 (dd, $^1J_{\text{PC}} = 33$ Hz, $^3J_{\text{PC}} = 5$ Hz, $^{2}J_{PtC} = 32 \text{ Hz}$, PMe), 50.6 (s, CO₂Me), 51.3 (s, CO₂Me), 128.4 (d, ${}^{3}J_{PC} = 10$ Hz, PPh), 128.7 (d, ${}^{3}J_{PC} = 10$ Hz, PPh), 129.9 (d, $^{4}J_{PC} = 2$ Hz, PPh), 130.0 (d, $^{4}J_{PC} = 3$ Hz, PPh), 131.0 (d, $^{2}J_{PC} =$ 10 Hz, ${}^{3}J_{PtC} = 17$ Hz, PPh), 131.2 (d, ${}^{2}J_{PC} = 7$ Hz, ${}^{3}J_{PtC} = 17$ Hz, PPh), 132.9 (t, ${}^{3}J_{PC} = 5$ Hz, PtC=C), 137.6 (dd, ${}^{1}J_{PC} = 47$ Hz, $^{3}J_{PC} = 5$ Hz, PPh), 137.8 (dd, $^{1}J_{PC} = 35$ Hz, $^{3}J_{PC} = 1$ Hz, PPh), $168.4 \text{ (dd, }^{3}J_{PC} = 13 \text{ and } 3 \text{ Hz, PtC}(CO_{2}\text{Me}) = C), 177.1 \text{ (d, }^{4}J_{PC} =$ 5 Hz, PtC=C(CO_2Me)), 193.9 (dd, $^2J_{PC} = 100$ and 13 Hz, PtC=C). ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂, 20 ${}^{\circ}$ C) δ -11.8 (d, ${}^{2}J_{PP}=21$ Hz, ${}^{1}J_{\text{PtP}} = 1678$ Hz, ${}^{4}J_{\text{SnP}} = 27$ Hz), -15.7 (d, ${}^{2}J_{\text{PP}} = 21$ Hz, ${}^{1}J_{\text{PtP}} = 2174 \text{ Hz}, {}^{4}J_{\text{SnP}} = 41 \text{ Hz}$). Anal. for $C_{28}H_{46}GeO_{4}P_{2}PtSn$: C, 37.58; H, 5.18%. Found: C, 37.67; H, 5.16%.

Reaction of 1 with Phenylacetylene (Fig. 3 and Table 1). A typical procedure is reported for the experiment given in Fig. 3b. Complex cis-1 (11.3 mg, 15.0 µmol) was placed in an NMR sample tube equipped with a rubber septum cap and dissolved in CD₂Cl₂ (0.6 mL). PMe₂Ph (9 mM) was added at room temperature, and the sample was cooled to -78 °C. Phenylacetylene (15.3 mg, 0.15 mmol) was added, and the sample tube was placed in an NMR sample probe controlled at 20.0 \pm 0.1 °C. The amounts of cis-1, trans-1, 2a, and 3a at time t were determined by the peak integration of the following singlet signals: cis-1, δ 0.29 (s, GeMe₃); trans-1, δ -0.24 (s, SnMe₃); **2a**, δ 0.31 (s, SnMe₃); **3a**: δ 0.38 (s. GeMe₃).

Isomerization of 2a to 3a (Cross-over Experiments). Complex 1 (11.3 mg, 15.0 μ mol) was dissolved in toluene- d_8 (0.6 mL) containing free PMe₂Ph (2.5 mM) at room temperature. Phenylacetylene (1.5 mg, 14.7 µmol) was added, and the sample solution was allowed to stand for 3 h at room temperature. ¹H NMR analysis revealed the formation of 2a and 3a in an 80:20 ratio. Then, p- $MeC_6H_4C\equiv CH$ (5.6 mL, 44.8 µmol) was added, and the sample was warmed at 50 °C for 12 h. The ¹H NMR spectrum measured at 20 °C showed the complete conversion of 2a to 3a; no trace

of the methyl proton signal of **3b** at δ 2.20 was detected. A similar experiment was carried out using PhC=CH (5.0 mL, 0.46 mmol) and a 77:23 ratio mixture of **2b** and **3b**. In this case, no trace of the methyl proton signal of p-MeC₆H₄C=CH at δ 1.96 was detected after the isomerization of **2b** to **3b**.

X-ray Structural Analysis. X-ray diffraction studies of *cis*-1 and **3a** were made on a Rigaku/MSC Mercury CCD diffractometer with graphite monochromated Mo K α radiation ($\lambda=0.71070$ Å (1 Å = 1 × 10⁻¹⁰ m)). The intensity data were collected at -70 (*cis*-1) and -50 °C (**3a**), and corrected for Lorentz and polarization effects and absorption (NUMABS and REQAB, respectively). All calculations were performed with the teXsan crystallographic software package of Molecular Structure Corporation. The structure was solved by heavy atom Patterson methods (PATTY and SAP91), and expanded using Fourier techniques (DIRDIF94). All non-hydrogen atoms were refined anisotropically (SHELXL-97). In the final cycles of refinement, hydrogen atoms were located at idealized positions (d(C–H) = 0.95 Å) with isotropic temperature factors ($B_{\rm iso}=1.20B_{\rm bonded\ atom}$) and were included in calculation without refinement of their parameters.

Crystallographic data and details of data collection and refinement are summarized in Table 3. The data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition numbers CCDC 236892 and 236893.

References

- 1 For reviews, see: a) I. Beletskaya and C. Moberg, *Chem. Rev.*, **99**, 3435 (1999). b) M. Suginome and Y. Ito, *Chem. Rev.*, **100**, 3221 (2000). c) H. K. Sharma and K. H. Pannell, *Chem. Rev.*, **95**, 1351 (1995). d) U. Schubert, *Angew. Chem., Int. Ed.*, **33**, 419 (1994). e) C. A. Recatto, *Aldrichimica Acta*, **95**, 1351 (1995).
- 2 For theoretical studies, see: Si-Si: a) S. Sakaki, N. Mizoe, and M. Sugimoto, *Organometallics*, **17**, 2510 (1998). b) S. Sakaki, M. Ogawa, and Y. Musashi, *J. Organomet. Chem.*, **535**, 25 (1997). c) S. Sakaki, M. Ogawa, and M. Kinoshita, *J. Phys. Chem.*, **99**, 9933 (1995). d) S. Sakaki, M. Ogawa, Y. Musashi, and T. Arai, *J. Am. Chem. Soc.*, **116**, 7258 (1994). e) A. Bottoni, A. P. Higueruelo, and G. P. Miscione, *J. Am. Chem. Soc.*, **124**, 5506 (2002). f) S.-Y. Kang, T. Yamabe, A. Naka, M. Ishikawa, and K. Yoshizawa, *Organometallics*, **21**, 150 (2002). Si–Sn: g) M. Hada, Y. Tanaka, M. Ito, M. Murakami, H. Amii, Y. Ito, and H. Nakatsuji, *J. Am. Chem. Soc.*, **116**, 8754 (1994).
- 3 H. Yamashita, T.-a. Kobayashi, M. Tanaka, J. A. Samuels, and W. E. Streib, *Organometallics*, **11**, 2330 (1992).
- 4 Y.-J. Kim, J.-I. Park, S.-C. Lee, K. Osakada, M. Tanabe, J.-C. Choi, T. Koizumi, and T. Yamamoto, *Organometallics*, **18**, 1349 (1999).
- 5 a) Y. Obora, Y. Tsuji, K. Nishiyama, M. Ebihara, and T. Kawamura, *J. Am. Chem. Soc.*, **118**, 10922 (1996). b) Y. Tsuji, K. Nishiyama, S. Hori, M. Ebihara, and T. Kawamura, *Organometallics*, **17**, 507 (1998). c) Y. Tsuji and Y. Obora, *J. Organomet.*

- Chem., 611, 343 (2000).
- 6 K. Mochida, T. Wada, K. Suzuki, W. Hatanaka, Y. Nishiyama, M. Nanjo, A. Sekine, Y. Ohashi, M. Sakamoto, and A. Yamamoto, *Bull. Chem. Soc. Jpn.*, **74**, 123 (2001).
- 7 a) F. Ozawa, *J. Organomet. Chem.*, **611**, 332 (2000). b) T. Sagawa, Y. Sakamoto, R. Tanaka, H. Katayama, and F. Ozawa, *Organometallics*, **22**, 4433 (2003). c) F. Ozawa, Y. Sakamoto, T. Sagawa, R. Tanaka, and H. Katayama, *Chem. Lett.*, **1999**, 1307. d) F. Ozawa and J. Kamite, *Organometallics*, **17**, 5630 (1998). e) F. Ozawa and T. Hikida, *Organometallics*, **15**, 4501 (1996). f) T. Hikida, K. Onitsuka, K. Sonogashira, T. Hayashi, and F. Ozawa, *Chem. Lett.*, **1995**, 985. g) T. Sagawa, Y. Asano, and F. Ozawa, *Organometallics*, **21**, 5879 (2002).
- 8 a) F. Ozawa, T. Hikida, and T. Hayashi, *J. Am. Chem. Soc.*, **116**, 2844 (1994). b) F. Ozawa, T. Hikida, K. Hasebe, and T. Mori, *Organometallics*, **17**, 1018 (1998). c) F. Ozawa, M. Kitaguchi, and H. Katayama, *Chem. Lett.*, **1999**, 1289. d) K. Hasebe, J. Kamite, T. Mori, H. Katayama, and F. Ozawa, *Organometallics*, **19**, 2022 (2000). e) F. Ozawa and T. Mori, *Organometallics*, **22**, 3593 (2003). f) F. Ozawa, M. Sugawara, and T. Hayashi, *Organometallics*, **13**, 3237 (1994). g) F. Ozawa, M. Sugawara, K. Hasebe, and T. Hayashi, *Inorg. Chim. Acta*, **296**, 19 (1999).
- 9 Y.-J. Kim, E.-H. Choi, and S.-W. Lee, *Organometallics*, **22**, 3316 (2003), and references cited therein.
- 10 For catalytic addition of germylstannanes to alkynes, see: a) E. Piers and R. T. Skerlj, *J. Chem. Soc., Chem. Commun.*, **1987**, 1025. b) T. N. Mitchell, U. Schneider, and B. Frohling, *J. Organomet. Chem.*, **384**, C53 (1990). c) T. Nakano, Y. Senda, and T. Miyamoto, *Chem. Lett.*, **2000**, 1408. d) Y. Senda, Y.-i. Oguchi, M. Terayama, T. Asai, T. Nakano, and T. Migita, *J. Organomet. Chem.*, **622**, 302 (2001).
- 11 H. S. Gutowsky and C. H. Holm, *J. Chem. Phys.*, **25**, 1228 (1956).
- 12 C. J. Levy and R. J. Puddephatt, *J. Am. Chem. Soc.*, **119**, 10127 (1997).
- 13 a) R. Walsh, "The Chemsitry of Organic Silicon Compounds, Part 1," ed by S. Patai and Z. Rappoport, John Wiley & Sons, Chichester (1989), p. 371. b) G. Pilcher and H. A. Skinner, "The Chemsitry of Metal–Carbon Bond, Vol. 1," ed by F. R. Hartley and S. Patai, John Wiley & Sons, Chichester (1982), p. 43.
- 14 The silyl(germyl) complex could not be prepared in spite of several trials.
- 15 L. E. Crascall and J. L. Spencer, *Inorg. Synth.*, **28**, 126 (1990).
- 16 PATTY and DIRDIF94: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, and J. M. M. Smits, "The DIRDIF-94 Program System," Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands (1994).
- 17 SAPI91: H.-F. Fan, "Structure Analysis Programs with Intelligent Control," Rigaku Corporation, Tokyo, Japan (1991).
- 18 SHELXL-97: G. M. Sheldrick, "Program for the Refinement of Crystal Structuers," University of Göettingen, Germany (1997).